AT JUST THE time that Henry Cavendish was completing his experiments in London, four hundred miles away in Edinburgh another kind of concluding moment was about to take place with the death of James Hutton. This was bad news for Hutton, of course, but good news for science as it cleared the way for a man named John Playfair to rewrite Huttons work without fear of embarrassment.
Hutton was by all accounts a man of the keenest insights and liveliest conversation, a delight in company, and without rival when it came to understanding the mysterious slow processes that shaped the Earth. Unfortunately, it was beyond him to set down his notions in a form that anyone could begin to understand. He was, as one biographer observed with an all but audible sigh, almost entirely innocent of rhetorical accomplishments. Nearly every line he penned was an invitation to slumber. Here he is in his 1795 masterwork,A Theory of the Earth with Proofs and Illustrations , discussing . . . something:
The world which we inhabit is composed of the materials, not of the earth which was the immediate predecessor of the present, but of the earth which, in ascending from the present, we consider as the third, and which had preceded the land that was above the surface of the sea, while our present land was yet beneath the water of the ocean.
Yet almost singlehandedly, and quite brilliantly, he created the science of geology and transformed our understanding of the Earth. Hutton was born in 1726 into a prosperous Scottish family, and enjoyed the sort of material comfort that allowed him to pass much of his life in a genially expansive round of light work and intellectual betterment. He studied medicine, but found it not to his liking and turned instead to farming, which he followed in a relaxed and scientific way on the family estate in Berwickshire. Tiring of field and flock, in 1768 he moved to Edinburgh, where he founded a successful business producing sal ammoniac from coal soot, and busied himself with various scientific pursuits. Edinburgh at that time was a center of intellectual vigor, and Hutton luxuriated in its enriching possibilities. He became a leading member of a society called the Oyster Club, where he passed his evenings in the company of men such as the economist Adam Smith, the chemist Joseph Black, and the philosopher David Hume, as well as such occasional visiting sparks as Benjamin Franklin and James Watt.
In the tradition of the day, Hutton took an interest in nearly everything, from mineralogy to metaphysics. He conducted experiments with chemicals, investigated methods of coal mining and canal building, toured salt mines, speculated on the mechanisms of heredity, collected fossils, and propounded theories on rain, the composition of air, and the laws of motion, among much else. But his particular interest was geology.
Among the questions that attracted interest in that fanatically inquisitive age was one that had puzzled people for a very long timenamely, why ancient clamshells and other marine fossils were so often found on mountaintops. How on earth did they get there? Those who thought they had a solution fell into two opposing camps. One group, known as the Neptunists, was convinced that everything on Earth, including seashells in improbably lofty places, could be explained by rising and falling sea levels. They believed that mountains, hills, and other features were as old as the Earth itself, and were changed only when water sloshed over them during periods of global flooding.
Opposing them were the Plutonists, who noted that volcanoes and earthquakes, among other enlivening agents, continually changed the face of the planet but clearly owed nothing to wayward seas. The Plutonists also raised awkward questions about where all the water went when it wasnt in flood. If there was enough of it at times to cover the Alps, then where, pray, was it during times of tranquility, such as now? Their belief was that the Earth was subject to profound internal forces as well as surface ones. However, they couldnt convincingly explain how all those clamshells got up there.
It was while puzzling over these matters that Hutton had a series of exceptional insights. From looking at his own farmland, he could see that soil was created by the erosion of rocks and that particles of this soil were continually washed away and carried off by streams and rivers and redeposited elsewhere. He realized that if such a process were carried to its natural conclusion then Earth would eventually be worn quite smooth. Yet everywhere around him there were hills. Clearly there had to be some additional process, some form of renewal and uplift, that created new hills and mountains to keep the cycle going. The marine fossils on mountaintops, he decided, had not been deposited during floods, but had risen along with the mountains themselves. He also deduced that it was heat within the Earth that created new rocks and continents and thrust up mountain chains. It is not too much to say that geologists wouldnt grasp the full implications of this thought for two hundred years, when finally they adopted plate tectonics. Above all, what Huttons theories suggested was that Earth processes required huge amounts of time, far more than anyone had ever dreamed. There were enough insights here to transform utterly our understanding of the Earth.
In 1785, Hutton worked his ideas up into a long paper, which was read at consecutive meetings of the Royal Society of Edinburgh. It attracted almost no notice at all. Its not hard to see why. Here, in part, is how he presented it to his audience:
In the one case, the forming cause is in the body which is separated; for, after the body has been actuated by heat, it is by the reaction of the proper matter of the body, that the chasm which constitutes the vein is formed. In the other case, again, the cause is extrinsic in relation to the body in which the chasm is formed. There has been the most violent fracture and divulsion; but the cause is still to seek; and it appears not in the vein; for it is not every fracture and dislocation of the solid body of our earth, in which minerals, or the proper substances of mineral veins, are found.
Needless to say, almost no one in the audience had the faintest idea what he was talking about. Encouraged by his friends to expand his theory, in the touching hope that he might somehow stumble onto clarity in a more expansive format, Hutton spent the next ten years preparing his magnum opus, which was published in two volumes in 1795.
Together the two books ran to nearly a thousand pages and were, remarkably, worse than even his most pessimistic friends had feared. Apart from anything else, nearly half the completed work now consisted of quotations from French sources, still in the original French. A third volume was so unenticing that it wasnt published until 1899, more than a century after Huttons death, and the fourth and concluding volume was never published at all. HuttonsTheory of the Earth is a strong candidate for the least read important book in science (or at least would be if there werent so many others). Even Charles Lyell, the greatest geologist of the following century and a man who read everything, admitted he couldnt get through it.
Luckily Hutton had a Boswell in the form of John Playfair, a professor of mathematics at the University of Edinburgh and a close friend, who could not only write silken prose butthanks to many years at Huttons elbowactually understood what Hutton was trying to say, most of the time. In 1802, five years after Huttons death, Playfair produced a simplified exposition of the Huttonian principles, entitledIllustrations of the Huttonian Theory of the Earth . The book was gratefully received by those who took an active interest in geology, which in 1802 was not a large number. That, however, was about to change. And how.
In the winter of 1807, thirteen like-minded souls in London got together at the Freemasons Tavern at Long Acre, in Covent Garden, to form a dining club to be called the Geological Society. The idea was to meet once a month to swap geological notions over a glass or two of Madeira and a convivial dinner. The price of the meal was set at a deliberately hefty fifteen shillings to discourage those whose qualifications were merely cerebral. It soon became apparent, however, that there was a demand for something more properly institutional, with a permanent headquarters, where people could gather to share and discuss new findings. In barely a decade membership grew to four hundredstill all gentlemen, of courseand the Geological was threatening to eclipse the Royal as the premier scientific society in the country.
The members met twice a month from November until June, when virtually all of them went off to spend the summer doing fieldwork. These werent people with a pecuniary interest in minerals, you understand, or even academics for the most part, but simply gentlemen with the wealth and time to indulge a hobby at a more or less professional level. By 1830, there were 745 of them, and the world would never see the like again.
It is hard to imagine now, but geology excited the nineteenth centurypositively gripped itin a way that no science ever had before or would again. In 1839, when Roderick Murchison publishedThe Silurian System , a plump and ponderous study of a type of rock called greywacke, it was an instant bestseller, racing through four editions, even though it cost eight guineas a copy and was, in true Huttonian style, unreadable. (As even a Murchison supporter conceded, it had a total want of literary attractiveness.) And when, in 1841, the great Charles Lyell traveled to America to give a series of lectures in Boston, sellout audiences of three thousand at a time packed into the Lowell Institute to hear his tranquilizing descriptions of marine zeolites and seismic perturbations in Campania.
Throughout the modern, thinking world, but especially in Britain, men of learning ventured into the countryside to do a little stone-breaking, as they called it. It was a pursuit taken seriously, and they tended to dress with appropriate gravity, in top hats and dark suits, except for the Reverend William Buckland of Oxford, whose habit it was to do his fieldwork in an academic gown.
The field attracted many extraordinary figures, not least the aforementioned Murchison, who spent the first thirty or so years of his life galloping after foxes, converting aeronautically challenged birds into puffs of drifting feathers with buckshot, and showing no mental agility whatever beyond that needed to readThe Times or play a hand of cards. Then he discovered an interest in rocks and became with rather astounding swiftness a titan of geological thinking.
Then there was Dr. James Parkinson, who was also an early socialist and author of many provocative pamphlets with titles like Revolution without Bloodshed. In 1794, he was implicated in a faintly lunatic-sounding conspiracy called the Pop-gun Plot, in which it was planned to shoot King George III in the neck with a poisoned dart as he sat in his box at the theater. Parkinson was hauled before the Privy Council for questioning and came within an ace of being dispatched in irons to Australia before the charges against him were quietly dropped. Adopting a more conservative approach to life, he developed an interest in geology and became one of the founding members of the Geological Society and the author of an important geological text,Organic Remains of a Former World , which remained in print for half a century. He never caused trouble again. Today, however, we remember him for his landmark study of the affliction then called the shaking palsy, but known ever since as Parkinsons disease. (Parkinson had one other slight claim to fame. In 1785, he became possibly the only person in history to win a natural history museum in a raffle. The museum, in Londons Leicester Square, had been founded by Sir Ashton Lever, who had driven himself bankrupt with his unrestrained collecting of natural wonders. Parkinson kept the museum until 1805, when he could no longer support it and the collection was broken up and sold.)
Not quite as remarkable in character but more influential than all the others combined was Charles Lyell. Lyell was born in the year that Hutton died and only seventy miles away, in the village of Kinnordy. Though Scottish by birth, he grew up in the far south of England, in the New Forest of Hampshire, because his mother was convinced that Scots were feckless drunks. As was generally the pattern with nineteenth-century gentlemen scientists, Lyell came from a background of comfortable wealth and intellectual vigor. His father, also named Charles, had the unusual distinction of being a leading authority on the poet Dante and on mosses. (Orthotricium lyelli, which most visitors to the English countryside will at some time have sat on, is named for him.) From his father Lyell gained an interest in natural history, but it was at Oxford, where he fell under the spell of the Reverend William Bucklandhe of the flowing gownsthat the young Lyell began his lifelong devotion to geology.
Buckland was a bit of a charming oddity. He had some real achievements, but he is remembered at least as much for his eccentricities. He was particularly noted for a menagerie of wild animals, some large and dangerous, that were allowed to roam through his house and garden, and for his desire to eat his way through every animal in creation. Depending on whim and availability, guests to Bucklands house might be served baked guinea pig, mice in batter, roasted hedgehog, or boiled Southeast Asian sea slug. Buckland was able to find merit in them all, except the common garden mole, which he declared disgusting. Almost inevitably, he became the leading authority on coprolitesfossilized fecesand had a table made entirely out of his collection of specimens.
Even when conducting serious science his manner was generally singular. Once Mrs. Buckland found herself being shaken awake in the middle of the night, her husband crying in excitement: My dear, I believe thatCheirotherium s footsteps are undoubtedly testudinal. Together they hurried to the kitchen in their nightclothes. Mrs. Buckland made a flour paste, which she spread across the table, while the Reverend Buckland fetched the family tortoise. Plunking it onto the paste, they goaded it forward and discovered to their delight that its footprints did indeed match those of the fossil Buckland had been studying. Charles Darwin thought Buckland a buffoonthat was the word he usedbut Lyell appeared to find him inspiring and liked him well enough to go touring with him in Scotland in 1824. It was soon after this trip that Lyell decided to abandon a career in law and devote himself to geology full-time.
Lyell was extremely shortsighted and went through most of his life with a pained squint, which gave him a troubled air. (Eventually he would lose his sight altogether.) His other slight peculiarity was the habit, when distracted by thought, of taking up improbable positions on furniturelying across two chairs at once or resting his head on the seat of a chair, while standing up (to quote his friend Darwin). Often when lost in thought he would slink so low in a chair that his buttocks would all but touch the floor. Lyells only real job in life was as professor of geology at Kings College in London from 1831 to 1833. It was around this time that he producedThe Principles of Geology , published in three volumes between 1830 and 1833, which in many ways consolidated and elaborated upon the thoughts first voiced by Hutton a generation earlier. (Although Lyell never read Hutton in the original, he was a keen student of Playfairs reworked version.)